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Abstract. A non-perturbative semiclassical expansion of the thermodynamic partition 
function is derived. The expansion makes use of action-angle variables and expresses the 
partition function in terms of forbidden (complex-valued) classical paths. The method is 
contrasted with the Wigner-Kirkwood perturbation expansion and illustrated with 
numerical examples for the harmonic oscillator, the rotational sum and the particle in a box. 

1. Introduction 

The successful application of semiclassical path approximations in several areas of 
physics and the increasing use of mixed statistical-dynamical techniques (see e.g. Agassi 
et a1 1977, Schatz et a1 1977, Billing et a1 1978, Miller and Skuse 1978) has led to a 
renewed interest in semiclassical methods in equilibrium statistical mechanics over the 
past decade (Feynman and Hibbs 1965, Burke and Siege1 1969, Feynman 1972, Miller 
1971, 1972, 1973, 1974, Hornstein and Miller 1972, Stratt and Miller 1978, Baltin 
1978). The central objects of interest here are naturally the Boltzmann density 
operator pp = exp(-PA) ( p  = l / k T )  and the thermodynamic partition function 

For simplicity we consider only the case of a single particle in a one-dimensional 
potential V ( q ) .  An extension to higher dimensions causes no problems for integrable 
systems (for a recent discussion of the semiclassical dynamics for integrable and 
non-integrable systems see Berry (1977a, b)). 

A classical path approximation for the particle density ~ ~ ( 4 )  = (q/&P/q) in the 
coordinate representation has been derived by Miller (1971, 1972, 1973, 1974), the 
semiclassical limit of the density of states n ( E )  = Tr 6(E  - H) has been investigated by 
Berry and co-workers (Berry and Mount 1972, Berry and Tabor 1976, 1977), and a 
semiclassical expression for the equilibrium Wigner distribution pp”( p ,  q )  in phase 
space has recently been obtained by the author (Korsch 1979). An evaluation of the 
semiclassical partition function (1.1) by integrating the semiclassical approximations to 
pp(q) ,  n ( E )  or pp”(p, q )  over coordinate space or phase space is numerically involved in 
practice, because it requires the computation of complex-valued classical trajectories 
for each integration point (subject to certain boundary conditions). For simple systems 
it has been demonstrated that the semiclassical theory can account for the quantum 
effects almost perfectly (Miller 1971, 1972, 1973,1974, Stratt and Miller 1978, Korsch 
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and Feshbach 1953) (see also appendix 2): 

-pH(I) +- A 

= f e x p ( - 2 . r r i ~ a ) ~ ~  
M=-m 

with 

1523 

(2.4) 

It should be noted that we have Q-M = QL, so that the sum in equation (2.4) is real 
valued. 

The expansion (2.4) is exact, but it shows a different convergence behaviour from 
that of the bound state series (2.2): The series (2.2) converges quickly for large values of 
A and p, i.e. low temperatures and large level spacings, whereas the expansion (2.4) 
converges quickly for small values of A and p. The next step is to identify the continuous 
variable I defined in (2.3) with the classical action 

where the integral is extended over a complete circuit. Equation (2.3) is then the 
well-known WKB quantisation condition. It may be worthwhile to state explicitly that 
(2.6) is an approximation, which is exact, however, whenever the JWKB quantisation is 
exact. The lowest order term M=O is recognised easily as the classical partition 
function 

(2.7) 

(here 4 is the angle variable conjugate to the action I). The terms with M f O  give 
quantum corrections to the classical result. They can be evaluated in the semiclassical 
limit A --* 0 by applying the method of stationary phase (or steepest decent) to the 
integrals (2.5). This gives the stationary condition 

~ ( I M )  = 21riM/hp (2.8) 

(with w ( I )  = aH/dI), which can be rewritten in terms of the imaginary time T = iT = 
2ni/w (Stratt and Miller 1978) as 

h p  = MT(IM). (2.9) 

A similar condition has been found by Miller (Miller 1971,1972,1973,1974, Stratt and 
Miller 1978). The solution of equation (2.8) or (2.9) defines the action I M  and a family 
of closed trajectories (Berry and Tabor 1976, 1977), which are, of course, classically 
forbidden and therefore complex-valued (Miller 1971, 1972, 1973, 1974, Stratt and 
Miller 1978; see also Korsch and Leissing 1976). The final ('primitive') semiclassical 
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approximation to QM is 

(2.10) 

The sum over the different values of M in equation (2.4) is a sum over different 
semiclassical 'states' of the system. These states differ topologically: the trajectories 
belonging to the same M can be deformed continuously into one another, those with 
different M cannot (Berry and Mount 1972, Berry and Tabor 1976, 1977, Korsch and 
Leissing 1976). 

The constant cy in equation (2.3) is determined by the phase shifts due to reflections 
at the caustics in a single circuit (Maslov 1972, Berry and Mount 1972, Berry and Tabor 
1976). For a smooth potential in one dimension we have cy = $, and for the particle in a 
box cy = 1 (there is phase jump of lr for reflection at a hard wall, instead of 7r/2 for a 
smooth potential). 

The primitive semiclassical formula (2.10) derived in this section shows an 
unexpected deficiency: it breaks down for the simple harmonic oscillator H = w l  (the 
stationary condition (2.8) cannot be satisfied, and U'  in the denominator of equation 
(2.10) is zero). This deficiency can be overcome by a uniform semiclassical approxima- 
tion to the integral (2.5) (details are given in appendix l ) ,  which gives 

(2.11) 

with H(0)  = 0 and 

A M  = - ( -PH(IM) +21r iMI~ /h ) "~ .  (2.12) 

The error function erfc can also be computed easily for complex-valued arguments (see 
appendix 1). In the harmonic oscillator limit equation (2.1 1) reduces to the exact closed 
form expression 

QM =(Am/? -2lriM)-' (2.13) 

for the integral (2.5). Equation (2.11) is therefore expected to give a reasonable 
approximation also for potentials, which are approximately harmonic. 

3. Examples 

The following examples will give some more insight into the working of the semiclassi- 
cal formalism. 

3.1. Harmonic oscillator 

For the simple harmonic oscillator the exact quantum partition function is 

Q = (2 sinh $ x ) - ' ,  x = hpw. (3.1) 
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The first terms of the Wigner-Kirkwood expansion (1.2) are 

Q=l /x -x /24+7x3 /5760+  . . . ,  (3.2) 

which is, of course, the beginning of the exact expansion of (3.1) in powers of x, starting 
with the classical result 

Qc' = l /x .  (3.3) 

The behaviour of the expansion (3.2) is shown in figure l (a ) ,  where QC', Q"'= 
l / x  -x/24 and Q'*'= Q"'+7x3/5760 are plotted along with the exact result (3.1). 

The semiclassical expansion (2.4), with QM of equation (2.13) leads to the series 

(3.4) 

which is also an exact expansion of (3.1). It is obvious that (3.4) is not a perturbation 
expansion in powers of h.  The behaviour of the successive approximations in (3.4) is 
shown in figure l ( b ) .  It is evident that the semiclassical expansion (3.4) is generally 
much better than the Wigner-Kirkwood expansion (3.2) shown in figure l (a ) ,  also at 
surprisingly low values of l / x  = kT/hp .  

0 02 L 
kTlhw 

I 
0.2 0.L 

kTlhw 

Figure 1. (a )  Thermodynamic partition function for the harmonic oscillator as a function of 
the temperature. The classical and the exact quantum result are compared with the first 
terms of the Wigner-Kirkwood perturbation expansion. ( b )  Thermodynamic partition 
function for the harmonic oscillator as a function of the temperature. The classical and the 
exact quantum result are compared with the first terms of the non-perturbative semiclassical 
expansion (2.4). 

3.2. The rotational sum 

The partition function for the rotating diatomic molecule is in the rigid rotor approxi- 
mation 

(3.5) 

With the usual semiclassical transformation I = A ( /  +$) (for convenience we use here 
the letter I instead of the common L) we find for the semiclassical QM 
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where the additional factor I in the integral stems from the degeneracy (21 + 1)  of the 
rotation. 

The uniform semiclassical approximation (2.11) together with 

IM = r i M h / P B  (3.7) 

and 

A = -i7rM/(PB)’” (3.8) 

gives the final result 

1 
QM = - 

PB 
1 - 26,&(6M) + i& 6 M  &). (3.9) 

Here F ( S M )  is Dawson’s integral (see appendix 1) and 6~ = 7rM/(PB)”’. The final 
semiclassical expansion is 

(3.10) 

The lowest-order approximations which retain only the term with M = 0 (Q(0)) and the 
terms M =  0 and M =  1 (Q(1)) are shown in figure 2 as a function of 1/PB = T/T,, 
where T, = B/k is the characteristic temperature of rotation. The agreement between 
Q ( l )  and the exact summation of (3.5) is excellent. 

T I T .  

Figure 2. Classical and quantum partition function for the rigid rotor as a function of the 
reduced temperature. The broken and the chain curves show the first terms (up to M = 1 
and M = 2) of the semiclassical expansion. 

3.3. Particle in a box 

Discontinuous potentials and potentials with hard walls create notorious problems in 
semiclassical applications (Adams and Miller 1977, Stratt and Miller 1978, Korsch 
1978). It is therefore worthwhile to discuss the typical example of a particle in a box in 
some detail. In this case we have a phase jump of 7r instead of 7r/2 for smooth potentials 
caused by the reflection at the classical turning points, and therefore the proper 
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semiclassical quantisation condition is I = h(n + 1) (n = 0, 1 ,2 ,  . . .), i.e. we have a = 1 in 
equation (2.3). The semiclassical energy levels obtained in this way agree with the exact 
ones. For the integer value of a = 1 the Poisson sum formula must be modified (see 
appendix 2) and we find for the particle (mass m )  in a box (length a ) ,  instead of equation 
(2.41, 

with 

where the dimensionless parameter 

e=-(-) a 2tr 
h p  

(3.11) 

(3.12) 

(3.13) 

has been introduced (Stratt and Miller 1978). 
It is easy to show that 

(3.14) -02M2 QM + Q-M = (e/&) e 

and we finally obtain the desired semiclassical expansion 

(3.15) 

0/2& is the classical partition function. 

mechanical series 
The semiclassical expansion (3.15) is also an exact representation of the quantum 

Q =  n = l  f exp[-(f)’]. (3.16’ 

The expansions (3.15) and (3.16) are related by the well-known theta-transformation?. 
Figure 3 demonstrates the fast convergence of the semiclassical expansion (3.15). 

The agreement with the exact result (3.16) is very good. Also shown in figure 3 is a 
semiclassical approximation obtained recently by Stratt and Miller (1978) which does 
not reproduce the behaviour of the quantum result. 

4. Concluding remarks 

It has been shown that the thermodynamic partition function can be written as a series 
expansion in terms of a topological sum. The first term of this series is the classical 
partition function; the higher terms depend on complex-valued classically forbidden 
paths. In contrast to the Wigner-Kirkwood expansion the present semiclassical series is 
non-perturbative in character. Numerical examples show a rapid convergence down to 
surprisingly low temperatures. 

+ The Poisson sum formula is exact, and therefore the semiclassical expansion of the partition function is also 
an exact representation, provided that the semiclassical quantisation conditions are exact. 
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Figure 3. Classical and quantum partition function for the particle in a box (6 = 
(a/h)(27rkT)”*) .  The broken curve is the semiclassical expansion of this work (up to 
M = 1) .  Also shown is a semiclassical approximation by Stratt and Miller (1978) (dotted 
curve). 

The semiclassical analysis derived in the present paper can be extended easily to the 
case of more than one dimension provided that the system is integrable. It would be 
highly desirable to extend the semiclassical theory to non-integral systems, which occur 
automatically if the system contains more than two particles, even if the particles 
interact via pair potentials. 

Another interesting field for future work should be an investigation of the role of 
Fermi-Dirac, Bose-Einstein and Boltzmann statistics in the semiclassical limit. Studies 
in these directions are presently under way. 

Appendix 1 

A uniform approximation to the integral 

(A l . l )  

which takes care of the interaction between the stationary point f ’ (x,)  = 0 and the lower 
limit of integration xo can be derived by using the error function (Abramowitz and 
Stegun 1964) 

JG * 
erfc(h) = 1 -er f (h)  =- dy e-y2 

2 A  
(A1.2) 

as a comparison integral (see also the articles by Berry and Tabor (1976) and Kafri and 
Kosloff (1977)) and mapping the stationary point xE of ( A l . l )  onto the stationary point 
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ys = 0 of (A1.2) by the mapping function 

f(x) = f(xJ + Y 2 .  

This gives 

A = *(f(x~)-f(xS))”~ 

(Al.3) 

(A1.4) 

(A SO for xOSx,). Changing to variable y in (Al.l)  and expanding g(x) dx/dy up to 
first order in y, one finally obtains 

For xO+ --oo we have exp(-f(xo)) + 0, A + -00, and with erfc(-a) = 2 we recover the 
usual saddle-point result. In the ‘harmonic oscillator’ limit (see § 2) f ( x )  = a + bx + cx2, 
c + O ,  the last two terms of (A1.5) cancel, and the first term agrees with the exact value 
of the integral ( A l . l )  in this limit (Berry and Tabor 1976). 

Finally it will be useful to give a formula for the error function in equation (A1 - 5 )  for 
complex values of the argument: 

erfc(u + i v )  = er f (u) - i (2 /G)  eV2F(u) ,  (Al.6) 

where 

F ( u )  =e-”* IO’ dt e’* (A1.7) 

is Dawson’s integral, which is tabulated (Abramowitz and Stegun 1964) or can easily be 
calculated numerically. 

Appendix 2 

The Poisson sum formula is usually written as 

(A2.1) 

with the continuous variable I = h(n +a), where a is an arbitrary constant between 0 
and 1 (0 < a < 1). Equation (A2.1) can easily be proved by integrating the identity 

over the interval (-a, +a). Equation (A2.1) is exact for well-behavedfunctionsf. The 
convergence behaviour, i.e. the quality of the approximation of the lowest terms, 
depends on the choice of a, which is naturally determined by the semi-classical 
quantisation condition (see equation (2.3) and the discussion in § 11). For the case of an 
infinitely deep square well potential we have a = 1, and (A2.1) is no longer valid in this 
form. An immediate modification of (A2.1) for the integer value of a = 1 is 

which can be easily verified. 
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